首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   344篇
  免费   12篇
  2023年   2篇
  2022年   2篇
  2021年   9篇
  2020年   10篇
  2019年   10篇
  2018年   10篇
  2017年   3篇
  2016年   12篇
  2015年   8篇
  2014年   24篇
  2013年   23篇
  2012年   27篇
  2011年   18篇
  2010年   17篇
  2009年   12篇
  2008年   24篇
  2007年   20篇
  2006年   16篇
  2005年   14篇
  2004年   17篇
  2003年   14篇
  2002年   15篇
  2001年   8篇
  2000年   6篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   4篇
  1994年   4篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
排序方式: 共有356条查询结果,搜索用时 15 毫秒
71.
Riboflavin (RF) plays an important role in various metabolic redox reactions in the form of flavin adenine dinucleotide and flavin mononucleotide. Human serum albumin (HSA) is an important protein involved in the transportation of drugs, hormones, fatty acid and other molecules which determine the biodistribution and physiological fate of these molecules. In this study, we have investigated the interaction of riboflavin RF with HSA under simulative physiological conditions using various biophysical, calorimetric and molecular docking techniques. Results demonstrate the formation of riboflavin–HSA complex with binding constant in the order of 104 M?1. Fluorescence spectroscopy confirms intermediate strength having a static mode of quenching with stoichiometry of 1:1. Experimental results suggest that the binding site of riboflavin mainly resides in sub-domain IIA of HSA and that ligand interaction increases the α-helical content of HSA. These parameters were further verified by isothermal titration calorimetry ITC which confirms the thermodynamic parameters obtained by fluorescence spectroscopy. Molecular docking was employed to suggest a binding model. Based on thermodynamic, spectroscopic and computational observations it can be concluded that HSA-riboflavin complex is mainly stabilized by various non-covalent forces with binding energy of ?7.2 kcal mol?1.  相似文献   
72.
Titanium dioxide nanoparticles (TiO2-NPs) interaction with human serum albumin (HSA) and DNA was studied by UV–visible spectroscopy, spectrofluorescence, circular dichroism (CD), and transmission electron microscopy (TEM) to analyze the binding parameters and protein corona formation. TEM revealed protein corona formation on TiO2-NPs surface due to adsorption of HSA. Intrinsic fluorescence quenching data suggested significant binding of TiO2-NPs (avg. size 14.0 nm) with HSA. The Stern–Volmer constant (Ksv) was determined to be 7.6 × 102 M?1 (r2 = 0.98), whereas the binding constant (Ka) and number of binding sites (n) were assessed to be 5.82 × 102 M?1 and 0.97, respectively. Synchronous fluorescence revealed an apparent decrease in fluorescence intensity with a red shift of 2 nm at Δλ = 15 nm and Δλ = 60 nm. UV–visible analysis also provided the binding constant values for TiO2-NPs–HSA and TiO2-NPs-DNA complexes as 2.8 × 102 M?1 and 5.4 × 103 M?1. The CD data demonstrated loss in α-helicity of HSA and transformation into β-sheet, suggesting structural alterations by TiO2-NPs. The docking analysis of TiO2-NPs with HSA revealed its preferential binding with aromatic and non-aromatic amino acids in subdomain IIA and IB hydrophobic cavity of HSA. Also, the TiO2-NPs docking revealed the selective binding with A-T bases in minor groove of DNA.  相似文献   
73.
Tea (Camellia sinensis) plantations are exposed to biotic and abiotic stresses. Among the biotic factors, blister blight (BB), caused by Exobasidium vexans, affects the quality and quantity of the product and demands high fungicide application. A long term solution for disease resistance would require the knowledge of the basic molecular and biochemical changes occurring in plant as an attempt to resist the pathogen and limit the spread of the disease which can further help in developing resistant cultivars using biotechnological tools. Thus, gene expression studies using the cDNA based suppressive subtractive hybridization library, characterization of genes for pathogenesis related (PR) proteins [chitinase (CsCHIT), glucanase (CsGLUC), phenylalanine ammonia lyase (CsPAL)] and genes in flavonoid pathway were accessed in the BB resistant and susceptible cultivars, SA6 and TES34, respectively. Further, biochemical analysis of PR and antioxidant enzymes (POX, APX, SOD) involved in BB resistance have been carried out to investigate the potential molecular and biochemical changes. Various stages of pathogen development had varied impact on PR protein, flavonoid pathway and anti-oxidative enzymes and indicates the possible role of reactive oxygen species, lignins, flavonoids, anthocyanins and other synthesized compounds in acting as antimicrobial/antifungal agents in tea cultivars.  相似文献   
74.
Ebrahim AF 《Bioethics》1995,9(3-4):291-302
The problems that organ transplantation poses to the Muslim mind may be summarized as follows: firstly, a Muslim believes that whatever he owns or possesses has been given to him as an amanah (trust) from Allah. Would it not be a breach of trust to give consent for the removal of parts of one's body, while still alive, for transplantation to benefit one's child, sibling or parent? Secondly, the Shari'ah (Islamic Law) emphasizes the sacredness of the human body. Would it not then be an act of aggression against the human body, tantamount to its mutilation, if organs were to be removed after death for the purpose of transplantation? In this paper I attempt to illustrate how the Muslim jurists have tried to resolve the dilemma of Muslims by providing them with certain guidelines based on the original sources of Islam, namely, the Qur'an and the Prophetic tradition. In order to assist the followers of other religious traditions to grasp the gravity of the problem posed by organ transplantation to the Muslim mind, I begin by discussing the opinions of Muslim jurists on the issue of utilization of human parts. Thereafter, I touch upon the resolutions taken by the various Islamic Juridical Academies on the issue in question. Finally, I shed light upon the inclusion of organ donation in a Muslim Will and the enforceable nature of such a will.  相似文献   
75.
In vertebrate retina, rod outer segment is the site of visual transduction. The inward cationic current in the dark-adapted outer segment is regulated by cyclic GMP. A light flash on the outer segment activates a cyclic GMP phosphodiesterase resulting in rapid hydrolysis of the cyclic nucleotide which in turn causes a decrease in the dark current. Restoration of the dark current requires inactivation of the phosphodiesterase and synthesis of cyclic GMP. The latter is accomplished by the enzyme guanylate cyclase which catalyzes the formation of cyclic GMP from GTP. Therefore, factors regulating the cyclase activity play a critcal role in visual transduction. But regulation of the cyclase by some of these factors — phosphodiesterase, ATP, the soluble proteins and metal cofactors (Mg and Mn) — is controversial. The availability of different types of cyclase preparations, dark-adapted rod outer segments with fully inhibited phosphodiesterase activity, partially purified cyclase without PDE contamination, cloned rod outer segment cyclase free of other rod outer segment proteins, permitted us to address these controversial issues. The results show that ATP inhibits the basal cyclase activity but enhances the stimulation of the enzyme by soluble activator, that cyclase can be activated in the dark at low calcium concentrations under conditions where phosphodiesterase activity is fully suppressed, and that greater activity is observed with manganese as cofactor than magnesium. These results provide a better understanding of the controls on cyclase activity in rod outer segments and suggest how regulation of this cyclase by ATP differs from that of other known membrane guanylate cyclases.This work was supported by the grants from the National Institutes of Health (EY07158, EY 05230, EY 10828, NS 23744) and the equipment grant from Pennsylvania Lions Eye Research Foundation.  相似文献   
76.
77.
This work represents a study of the binding and distribution of three different calcium channel blockers in the Sprague-Dawley rat liver, using an in situ perfusion technique. For this purpose, [3H] desmethoxyverapamil, [3H] PN200-110 (isradipine) and [3H] azidopine were used as binding probes interacting with calcium channels. The perfusion steps of the liver involved both portal vein and thoracic inferior vena cava cannulations as inlet and outlet respectively. The subhepatic inferior vena cava was ligated to prevent leakage of the perfusate. Buffer, containing the tracer drug, was administered via the portal vein at a rate of l mL/min and perfusate collected at the same rate within specified time intervals during 50 min. The concentration of the tracer solutes in the perfusate's outlet increased with time, and steady state was observed for all tracers at 40 min. The effect of adding cold isradipine to tracer desmethoxyverapamil, or cold verapamil to tracer PN200-110 were also assessed. First order rate constants for hepatocellular influx, efflux and calcium channel binding of the tracer substances were obtained using a simplified model from Goresky et al. [25]. These constants were mathematically manipulated and changed into permeability constants, second order binding constants, and residency times.Tracer solute influx across hepatocellular membranes is solubility-diffusion controlled, is inversely related to the molecular weights and is different in value from the efflux constants. Cold isradipine reduced the binding constant of desmethoxyverapamil by 36%, while cold verapamil reduced the binding constant of PN200-110 by 23%. Azidopine cellular distribution was low, however, binding to its receptor was analogous to desmethoxyverapamil and PN200-110. Moreover, PN200-110 had the highest residency time with no effect of cold verapamil on its receptor binding, while desmethoxyverapamil had the lowest residency time which significantly increased in the presence of cold isradipine.  相似文献   
78.
The importance of microRNAs in gene expression and disease is well recognized. However, what is less appreciated is that almost half of miRNA genes are organized in polycistronic clusters and are therefore coexpressed. The mir-11∼998 cluster consists of two miRNAs, miR-11 and miR-998. Here, we describe a novel layer of regulation that links the processing and expression of miR-998 to the presence of the mir-11 gene. We show that the presence of miR-11 in the pri-miRNA is required for processing by Drosha, and deletion of mir-11 prevents the expression of miR-998. Replacing mir-11 with an unrelated miRNA rescued miR-998 expression in vivo and in vitro, as did expressing miR-998 from a shorter, more canonical miRNA scaffold. The embedded regulation of miR-998 is functionally important because unchecked miR-998 expression in the absence of miR-11 resulted in pleiotropic developmental defects. This novel regulation of expression of miRNAs within a cluster is not limited to the mir-11∼998 cluster and, thus, likely reflects the more general cis-regulation of expression of individual miRNAs. Collectively, our results uncover a novel layer of regulation within miRNA clusters that tempers the functions of the individual miRNAs. Unlinking their expression has the potential to change the expression of multiple miRNA targets and shift a biological response.  相似文献   
79.
Selective autophagy is the mechanism by which large cargos are specifically sequestered for degradation. The structural details of cargo and receptor assembly giving rise to autophagic vesicles remain to be elucidated. We utilize the yeast cytoplasm‐to‐vacuole targeting (Cvt) pathway, a prototype of selective autophagy, together with a multi‐scale analysis approach to study the molecular structure of Cvt vesicles. We report the oligomeric nature of the major Cvt cargo Ape1 with a combined 2.8 Å X‐ray and negative stain EM structure, as well as the secondary cargo Ams1 with a 6.3 Å cryo‐EM structure. We show that the major dodecameric cargo prApe1 exhibits a tendency to form higher‐order chain structures that are broken upon interaction with the receptor Atg19 in vitro. The stoichiometry of these cargo–receptor complexes is key to maintaining the size of the Cvt aggregate in vivo. Using correlative light and electron microscopy, we further visualize key stages of Cvt vesicle biogenesis. Our findings suggest that Atg19 interaction limits Ape1 aggregate size while serving as a vehicle for vacuolar delivery of tetrameric Ams1.  相似文献   
80.
Reactive oxygen and nitrogen species (ROS and RNS) produced by the phagocytic cells are the most common arsenals used to kill the intracellular pathogens. However, Leishmania, an intracellular pathogen, has evolved mechanisms to survive by counterbalancing the toxic oxygen metabolites produced during infection. Polyamines, the major contributor in this anti-oxidant machinery, are largely dependent on the availability of L-arginine in the intracellular milieu. Argininosuccinate synthase (ASS) plays an important role as the rate-limiting step required for converting L-citrulline to argininosuccinate to provide arginine for an assortment of metabolic processes. Leishmania produce an active ASS enzyme, yet it has an incomplete urea cycle as it lacks an argininosuccinate lyase (ASL). There is no evidence for endogenous synthesis of L-arginine in Leishmania, which suggests that these parasites salvage L-arginine from extracellular milieu and makes the biological function of ASS and the production of argininosuccinate in Leishmania unclear. Our previous quantitative proteomic analysis of Leishmania promastigotes treated with sub-lethal doses of ROS, RNS, or a combination of both, led to the identification of several differentially expressed proteins which included ASS. To assess the involvement of ASS in stress management, a mutant cell line with greatly reduced ASS activity was created by a double-targeted gene replacement strategy in L. donovani promastigote. Interestingly, LdASS is encoded by three copies of allele, but Western blot analysis showed the third allele did not appear to express ASS. The free thiol levels in the mutant LdASS-/-/+ cell line were decreased. Furthermore, the cell viability in L-arginine depleted medium was greatly attenuated on exposure to different stress environments and was adversely impacted in its ability to infect mice. These findings suggest that ASS is important for Leishmania donovani to counterbalance the stressed environments encountered during infection and can be targeted for chemotherapeutic purpose to treat visceral leishmaniasis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号